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Stokes flow of a cylinder and half-space 
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The coalescence of a cylinder with half-space by creeping viscous flow driven solely 
by surface tension is analysed using methods developed previously. The evolution of 
the shape with time is described, exactly, in terms of a time-dependent mapping 
function z = a([,  t )  of the upper half-plane, conformal on Im [ 2 0. The results are in 
closed analytic form except for the time, which requires a quadrature. The height of 
the figure decays as t-' as t+  00, which is consistent with Kuiken's analysis of an 
isolated disturbance. (Previously, the author reported an erroneous solution which 
behaved otherwise.) The results are compared with the coalescence of equal cylinders 
obtained previously. For a modest degree of coalescence, the shapes are rather alike. 
In the limit as t + O ,  the time dependence of the minimum widths (necks) are the 
same. At the times when the minimum widths disappear, the heights of the two 
shapes are equal. 

Appended is a note providing a counter-example to earlier conjecture. A simply 
connected region undergoing this type of flow need not remain so. 

1. Introduction 
This article treats the coalescence of a circular cylinder with half-space, by 

creeping viscous incompressible plane flow driven by surface tension. The time 
evolution of the shape is determined exactly - in simple, closed, analytic form except 
for the value of the time, which requires a quadrature. Internal velocity and stress 
fields are not obtained, though this is in principle straightforward. The subject is 
relevant to viscous sintering (Hopper 1984; Jagota & Dawson 1988; Kuiken 1990) 
and fibre optics technology, and is an interesting fluid mechanics problem in its own 
right. It is fundamentally nonlinear due to the large changes in shape, and it is 
emphasized that no mathematical approximations are made. The analysis employs 
a general method developed previously (Hopper 1990, 1991), in which the shape 
evolution is described in terms of a time-dependent conformal mapping from a fixed 
reference domain. References on related work are given in Hopper (1990, 1991), and 
an analysis of the coalescence of equal cylinders may be found in Hopper (1990). An 
article providing more details, in the context of materials science applications, is 
planned for publication elsewhere (Hopper 1992). 

Regrettably, I previously disseminated erroneous information about this flow. 
This was based upon an analysis of the coalescence of two cylinders of unequal 
diameters. That analysis contained a grievous blunder, fortunately detected by Dr 
S. Richardson of Edinburgh University (personal communication, 1991). One 

t Dr Richardson, after discovering the error in my analysis of the  coalescence of unequal 
cylinders, correctly described that flow (Richardson 1992). A differential equation connecting two 
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incorrect conclusion of the erroneous analysis was that the height of the shape above 
the plane remained constant in time, which was both counter-intuitive and a t  odds 
with a general result of Kuiken (1990) that an isolated disturbance on half-space 
should ultimately decay as t-l. As will be seen, the shape does indeed decay in the 
manner given by Kuiken. I apologize to those I misled. 

The general theory for a finite region regards it as the cross-section of an infinitely 
long isothermal general cylinder of Newtonian viscous liquid having dynamic 
viscosity 9 ,  density p and surface tension y ,  in a gravitational field g, all these being 
constant. The present case may, presumably, be imagined as the coalescence of a 
cylinder with some large region (such as a second cylinder or a square prism) that is 
allowed to become infinite in extent, and flat (in the infinite limit) on the side 
touching the circular cylinder. Let the initial diameter of the cylinder be Do. A 
normalization scheme, detailed in Hopper (1990), is carried out using Do as the 
characteristic length. Denoting the position vector x, and the time to, the 
corresponding dimensionless variables are x = xo/Do and t = yto/r/Do. Formally, the 
Navier-Stokes momentum equation in dimensionless form then involves a Suratman 
number pyDO/v2 and a Bond number pgDi/y. In  the limit where these approach zero, 
the equations of motion in dimensionless form reduce to those of Stokes: V2u = V p ,  
V -u  = 0. In practice, the Suratman number can often be made small independent of 
size by raising the viscosity 9 (for example, by a temperature change) ; a small Bond 
number requires a small size or microgravity environment. The boundary condition 
is that the surface traction is normal to the boundary and of magnitude equal to its 
curvature. An additive constant pressure would have no effect. 

As discussed in Hopper (1990), the applicability of the analysis is subject to certain 
limitations. The surface tension of a real liquid depends on the local curvature if it 
is large enough, and on the separation of two surfaces if they are close enough. 
Primarily for this reason, the situation near the neck surface may in the very earliest 
stages of coalescence fail to satisfy the model. For finite regions, plane flow is an 
assumption that is applicable in variable degree. If the ends of the general cylinder 
are free, then capillarity induces a general axial flow, causing the body to shorten and 
its cross-sectional area to increase. In  the present case, where a portion of the region 
has become infinite, the surface tension forces causing the axial flows are negligible 
compared with those of the circular cylinder of finite diameter, and the flow is strictly 
planar. Inertial effects are totally neglected, and no analysis of the magnitude of the 
inertial terms (of the Navier-Stokes momentum equation) will be attempted for the 
fields implicit in the present analysis. While it is not possible a priori to assure that 
inertial effects are negligible for all times, nothing about the behaviour suggests 
otherwise. 

Leaving aside these issues, we now take Stokes’ equations (momentum and 
continuity) for plane flow together with the classical surface traction boundary 
condition, in dimensionless forms, as the starting point. Let z = Q(g, t )  conformally 
map Im g 2 0 onto the (dimensionless) region representing the cylinder coalescing 
with half-space. Primes denote complex derivatives with respect to the independent 
(complex) variable; an overdot, the derivative with respect to time; and an asterisk, 
the complex conjugate. Let 6 = Re 5. The surface tractions are intrinsic in the map 
Q(g, t ) .  By considering the requirements that the surface velocity be such that a point 
z = Q((, t )  move to z+dz = Q((+d[, t+dt) in the time increment dt, and that the 

of the four map parameters must be solved numerically, with a subsequent quadrature still 
required for the time. 
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boundary condition for the surface traction equation be satisfied, the following 
expression (equation (30a), Hopper 1991) giving the values of a certain function 
$ ( E ,  t )  in terms of a([, t )  was obtained: 

G(c) is defined by the Cauchy integral 

With the boundary values given by a Sokhotskyi (Plemelj) formula, (2) defines 
a single function analytic on Imy 2 0. In practice, a suitable parametric form 
52“; al ( t ) ,  az(t),  . . . ]  must be conjectured - i.e. guessed. The basic condition of the 
theory is that $ ( E , t )  be the boundary value of a function analytic throughout 
Im 5 2 0 for t > 0 ;  that is, that the function on the real line can be continued 
analytically onto the upper half-plane. The chosen form is validated by demon- 
strating that this is possible, and the time dependences of the parameters are 
determined by actually doing so. 

2. Analysis 
The following mapping function is conjectured : 

where a(t) + O  and h(t)  + 1 as t + O ,  and a(t)  + m as t - t  m. Informally, the pole at 
c = -  ia draws the line Im c = 0 into a circle as t + 0 ; allowing the strength of the pole 
to decrease as a+O enables the circle to be kept finite and localized as t + O ;  and 
moving the pole to infinity leaves a straight line as t+ co. It will be seen presently 
that this map indeed has adequate flexibility to describe the time-evolution of the 
flow of a region that, as a+O, consists of the lower half-plane together with a disk 
of unit diameter centred at, z = ii. Obviously, Q(0, t )  = ih(t) and a[[+( co +iO) ,  t ]  
= (;a-i0). 

The analysis is much like that of the isolated groove treated previously (Hopper 
1991, $4). Upon using (3) in ( l ) ,  it is found that the analytic continuation of @ ( E )  onto 
Im > 0 involves terms causing, potentially, a pole of first and of second order at 
fl= ia. These may be avoided by adjusting a(t) and h(t)  so that the coefficients of 
(y-ia)-l and of (c-ia)-z vanish as c+ia. The latter gives the condition 

u = G(ia) (4) 

and the former leads (using (4)) to an expression that is easily rearranged and 
expressed as 

(5) 4d(ah)/dt + d(h2)/dt = 0. 

Integrating and imposing the condition ( t + O )  that h = 1 when a = 0, 

a = (1 -h2)/4h. (8 )  
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With (6) it is easily shown by direct integration that the area above Imz = 0 is 
constant a t  an. It is also straightforward to show that as a+O the boundary 
becomes circular for 151 < a and becomes a straight line for 151 % a. 

Equation (4) becomes 

. 1 "  
a = -I (5 + ia) { [c2 - a(a + h)I2 + 2ni dt. (7) 

Exploiting symmetry and using equation (3.165.2) of Gradshteyn & Rhyzhik (1980), 

Here K ( k )  is the complete elliptic integral of the first kind defined by 

K (  k )  = (1  - k2 sin2 q)-i dq. "' 
Define a new parameter 

p = [h/(a + h)]:. 

The parameters are now interrelated by (6) [a(h)] and by 

The stage of the coalescence is usually most conveniently specified with the 
parameter h. Equations (8) and (12) now give dp/dt, and the result may be integrated 
to give 

2 - k 2  
dk. JL k2(4-  3k2)i( 1 - k2)iK(k) 

t (p )  = 27F 

t (p)  must be integrated numerically, and it is helpful to eliminate the (1  - k2)-; factor 
with the substitution k = cos8: 

d9. 
2 - cos2 9 

(cos2 9) (4 - 3 cos2 9)gK(cos 8) 

cos-', 
t (p) = 2K Jo 

Equations (3), ( l l ) ,  (12) and (13) provide the complete solution of the problem for 
t > 0 in terms of the parameter p. (The theory is both mathematically and physically 
invalid for the singular condition of p = 0 ;  mathematically, p may be taken 
arbitrarily close to zero.) A convenient parametric form for the Cartesian coordinates 
is 

(Here and in the following the sign of 5 has been reversed, so that 6 > 0 gives 
X > 0.) One may also use the ordinate as the independent variable: 

X(y) = k(y+a) (h /y - l ) t .  ( l a c )  
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FIGURE 1. Coalescence of a cylinder into half-space. The shapes are those for 

t = 0.035, 0.248, 0.390, 0.631, 1.107, 1.749 and 3.207. 

Typical shapes are shown in figure 1.  

figure is just h. The minimum and maximum widths Xmin and X,,, occur a t  
A few geometric features may be noted. As already mentioned, the height of the 

1-h2 
2 [ h f  (3h2-2);] '  Y(Emin/max) = 

These disappear for h < hloss = ($: the maximum and minimum widths merge 
with the inflexion when h = hloss. At this point  loss = 62/2, X,,,, = &'2 x 0.5303, 
Y,,,, = &1/6 z 0.2041, ,uloss = $ 4 8  and tl,,, z 0.5930. Generally, the inflexion 
occurs a t  

( 1  - h2)):( 1 + 3h2):, 
1 6. = - 

4 4 3 h  inPl 

Y(tinP1) = ih( 1 - h2).  (16c)  

As t + 00 ( , u + O ) ,  the shape becomes 

Y(5) N h[l t 16h2X(c)2]-1. (17) 

The following approximations to t(p) may be obtained by approximating the 
integrand of (13a) with appropriate series' (Gradshteyn & Rhyzhik 1980, See. 8.113). 
For t + 00, integration provides a convergent series, the first few terms of which are 

(18) t ( ~ )  x t(,u@) + ( l / ,u -  1 / ~ 0 )  + H ( P ~ - P )  +%(,4-,u3) as ,u+O0.  
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For yo = 0.3, t (yo) x 3.971 47. The error is then < 0.1 % for h < 0.4 (y < - 0.658). For 
t +. 0, successive integrations by parts gives the asymptotic approximation 

1 2 6 
t (P)  - 

as y + l .  (19) 

This is accurate to - 1 YO for h > 0.9999 ( t  < - 0.006) and to - 5 %  for h > 0.99 
( t  < - 0.09). 

3. Discussion 
The coalescence of a cylinder with half-space in Stokes flow driven by surface 

tension has been described. The extent to which coalescence has progressed is 
conveniently specified by the parameter h, which is the height of the shape. The 
singular initial state is avoided by requiring h < 1. Equations (1 1)-( 14) then provide 
a complete description for t > 0. 

Kuiken (1990) analysed the damping of small disturbances on half-space 
undergoing plane viscous flow driven by capillarity. He found that the amplitude of 
a disturbance that initially is localized ultimately decays as t-l. A disturbance that 
is initially extended, such as a wave, decays exponentially. The reason an extended 
disturbance decays more rapidly than a localized one is that the latter spreads out 
with time, so the curvature driving the flow decreases faster. For the same reason, 
exponential decay must eventually occur in the coalescence of two cylinders of 
arbitrary initial diameters. (If the ratio of initial diameters is large, one intuitively 
expects the exponential decay to set in only at quite large times - when the finiteness 
of the boundary finally prevents further spreading of the remnant of the smaller 
cylinder.) The expected t-l behaviour is found here: at very long times, h - 1/2t. In 
this limit, the shape becomes 

1 
2t[ 1 + (2X/t)2] . Y -  

Kuiken (1990) analysed directly the decay of the shape (20), in a small-amplitude 
limit. Under a suitable renormalization, the results are equivalent, demonstrated as 
follows. Let t* be some large dimensionless time in the present analysis, such that 
(20). is an accurate approximation. Then renormalize using Do Y(0, t * )  as the 
characteristic length, and with the new time zero corresponding to t*. In making the 
comparison, it is necessary to retain the ‘ e 7  multiplier in Kuiken’s (1990) (28)-(29). 
The equivalence then follows directly. 

No purely analytic solution of the coalescence of cylinders of arbitrary diameter is 
available at this time. Presumably, however, most features of such flow will be 
bracketed by the two cases that are known - the cylinder and half-space, and the two 
equal cylinders. A comparison is therefore of interest. Equations for equal cylinders 
(Hopper 1990) are given in Appendix A. Variables subscripted ‘ 1 ’ refer to the two- 
cylinder case. Figure 2 (a) compares the shapes a t  the same time, while figure 2 ( b )  
shows the shapes at  equal values of the minimum widths (see (A 4)). It is seen that 
for a modest degree of coalescence, the lobes in the two cases are rather similar. This 
merely reflects the fact that the forces driving the flows are comparable. In the 
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FIQURE 2. (a) Comparison of the coalescence of a cylinder and half-space with that of equal 
cylinders at t = 0.300. For the cylinder and half-space X,,, = 0.353; for the equal cylinders, Xlmln 
= 0.300. (b) Comparison of the coalescence of a cylinder and half-space with that of equal 
cylinders, when X,,, is the same. For the cylinder and half-space t = 0.300 ; for the equal cylinders, 
t ,  = 0.386. 

FIQURE 3. Minimum widths in the coalescence of a cylinder and half-space (lower curve), and in 
that of equal cylinders (upper curve) &B a function of time. The log-log scale obscures the diverging 
likenesses of the shapes at  long times. 

coalescence of a pair of unequal cylinders it may therefore be expected that the shape 
of the smaller lobe, at a given dimensionless time, will depend only weakly upon the 
initial diameter ratio-again for a modest degree of coalescence and with the 
normalization done using the diameter of the smaller cylinder as the characteristic 
length. As a semi-quantitative guide, figure 3 shows Xmin ( t )  for the two cases, and 
figure 4 shows the shapes when their minimum widths are lost. It is remarkable that 
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FIGURE 4. Comparison of the coalescence of a cylinder and half-space with that of equal cylinders, 
at the times when the minimum widths are lost (tloSs x 0.5930, XPln x 0.5303, t,,,,, x 1.02665, 
Xlmln x 0.5774). The heights of the two shapes are identical: h = (4)s. 

the heights of the two shapes are then the same: (8): x 0.8165. The obvious 
speculation is that this might be true of some characteristic vertical dimension for 
arbitrary initial diameters. 

The very early time regime involves two slightly rounded cusps that nearly meet, 
a situation which may be of theoretical interest. Using the small-time approxi- 
mations, (19) and (A 6),  it is found that the time-dependances of Xmin in the limit 
as t -+ 0 are identical for both a cylinder on half-space and for equal cylinders : 

Only the lead terms of these asymptotic approximations match. It is reasonable to 
presume that (21) holds for two cylinders of arbitrary diameter. 

The theory of coalescence of equal cylinders (Appendix A) is in agreement with 
experimental observations of glass fibres near the softening point (Konvin, Eaton & 
Pye 1991). D. Korwin, S. Lange & L. Pye (personal communication, 1990) have 
studied experimentally at the New York State College of Ceramics a t  Alfred 
University, the coalescence of a fibre with a plate but have not yet compared the 
results with the present theory. (The plate thickness was about four fibre diameters.) 

The author thanks Professor S. Richardson (University of Edinburgh) for 
thoughtful comments and, especially, for discovering the error in the analysis of 
unequal cylinders. Insightful comments by an anonymous referee of the (erroneous) 
unequal-cylinders manuscript were most helpful in clarifying inertial issues. This 
work was performed under the auspices of the US Department of Energy by the 
Lawrence Livermore National Laboratory under contract W-7405-ENG-48. 
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Appendix A. Formulae for the coalescence of equal cylinders 
The coalescence of two equal cylinders was solved in Hopper (1990, 94.4). (Plane 

flow in this case is an approximation, the validity of which discussed in that reference. 
See also Hopper 1984.) In this Appendix, some analogous equations for the cylinder 
and half-space problem are presented. Notations correspond but are subscripted ' 1 '. 
To facilitate comparison with the cylinder on half-space, the normalization of the 
equal-cylinder case is now based on the initial diameter, rather than the final radius, 
as the characteristic length. 

The degree of coalescence is specified by a parameter v, which decreases from 1 to 
0 over time. One quadrant of the shape is given by 

l -v '  l + v  
(1-5")", [2( 1 + v')$ (1 + v)' -4v5' Xl(5) = 

with reflections completing it. The parameter E varies from 0 to 1. The curves 
(X,, Y,)  all pass through the point (f,i). The time is 

t,(v) = - * [ [k( 1 + k2)f K(k)]-l dk. 
2 4 2  

These results are equivalent to those in Hopper 1990 (equations (63) and (64)), and in 
Hopper 1984 (equation (5)) when allowance is made for the different normalizations. 

(A 3 4  

(A 3b)  

The height and the minimum width are 

Yl( 1) = (1 + v) [2( 1 + v71-i 

and 

respectively. Xlmin, X,,, and Xlinfl merge and are lost at  vloss = 3 - 2( 4 2 )  x 0.1716, 
at which point X,(O) = 1 / 4 3  x 0.5774, Y,(l) = (i)i x 0.8165 and tllosr x 1.02665. 

= X,(O) = (1 - v) [2( 1 + vZ)]-i, 

For a given X,(O),  (A 3b) provides the corresponding value of v :  

v = {1-2X1(0) [1--x1(0)~]~}[1-2X,(0)~]-'. 

This is useful when comparing the two flows as in figure 2(b). 
Approximate expressions for the time are 

t l ( v )  x 1/42[ln (l/v)+3v2/16-0.31991 as v+O, 

+ 1 
In [16/(1- v')] {In [16/( 1 - v')]}' - 

K 1-v' 
t l (v)  - a ln  [16/( 1 - v')] 

The error in the former is < 0.1 Yo for v < 0.1, while in the later 
v > 0.998. 

(A 5) 

as v -+ l . (A6)  

it is < 1 'YO for 

Appendix B. Non-maintenance of domain simplicity 
The issue was raised in Hopper (1990) of whether a simply connected region 

undergoing plane Stokes flow driven by surface tension remains simply connected. A 
simple counter-example shows that this is not so. The counter-example is not 
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FIGURE 5. Simply connected region that will evolve to one that is not simply connected. See 
Appendix B. 

analysed in detail, but the general nature of the flow is so evident that  the conclusion 
can hardly be doubted. The region is depicted in figure 5. The following employs 
dimensional quantities. The body is centred on Cartesian coordinates (q, zz) ,  but 
these are not shown. The corners are drawn square but should be regarded as slightly 
rounded. 

The net force, per unit depth of the body, applied to the cross-hatched central web 
by the surface-tension forces of the upper half of the body is F = -2yiz. If the width 
of the web is w, then the velocity field in the web will (except near the corners) be 
approximately v x ( y /2pw)  (z, i, -x2 iz). The other parts of the body are subjected to 
net forces of comparable magnitude, but the resulting strain rates (except in the 
immediate vicinity of corners) will be much smaller owing to the large widths. Thus 
the thick regions will translate more or less rigidly with a velocity approximately 
that of the ends of the web. If the height of the web is h, then the velocity of the large 
sections of the upper half of the body will be - ( - yh/2pw).  I n  particular, this will 
be roughly the velocity of the line segment AB. Choosing w small, this motion is 
dominant, and some portion of AB will soon contact its lower counterpart. This 
would occur long before other large-scale changes of the boundary became significant. 
Deformation in the immediate vicinity of the corners, where the stresses are large, 
would not prevent contact. For sufficiently small w, with a constant y / p ,  inertia 
would be significant, but the question raised is purely one of Stokes flow, in which 
inertia is entirely omitted. 

Thus, a simply connected region undergoing plane Stokes flow driven solely by 
surface tension need not remain simply connected. Note, however, that the counter- 
example is not a star domain. 
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on p. 356, the name is Kolosoff (or Kolosov) not Kolostoff. I n  (3), the second term within braces 
should be vF’(a), and the a in the final term should be overdotted. The equation in the second line 
of $ 2  should read.. . = sl[l +cN/(N- l)]. In  (7),  the a and b in the last term within braces should 
be overdotted, and the limit is aa b + O .  The first a in (8) should be overdotted. The equality sign 
within the right-hand side of (15) should be a plus. There should be a closing parenthesis after the 
x in (16). There should be a closing bracket before the exponent of (18b). In  (21), the second 
argument of QN should be v ( t ) ,  and the closing parenthesis following 5-l should not be present. The 
expression in the next to the last line of p. 358 should be (2/x)k-1+11(N-e). In  the third line of the 
second paragraph of $3, ‘ z  = dz = . . . ’  should read ‘z+dz = . . .’ In  the line after (29), the 
parenthesis after t sfiould be closing, and the exponent should be p. The last numerical factor in 
(37) should be [2(3)a]-’. Equation (38) should begin t ( v )  = 2(3)sxJ.. . . There should be a minus 
after the equality of (40b). 


